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ABSTRACT
We present novel transfer functions that advance the classifica-
tion of volume data by combining the advantages of the existing
boundary-based and structure-based methods. We introduce the
usage of the standard deviation of ambient occlusion to quantify
the variation of both boundary and structure information across
voxels, and name our method as boundary-structure-aware transfer
functions. Our method gives concrete guidelines to better reveal the
interior and exterior structures of features, especially for occluded
objects without perfect homogeneous intensities. Furthermore, our
method separates these patterns from other materials that may
contain similar average intensities, but with different intensity vari-
ations. The proposed method extends the expressiveness and the
utility of volume rendering in extracting the continuously changed
patterns and achieving more robust volume classifications.
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1 INTRODUCTION
One of the critical components of direct volume rendering is the
design of a transfer function to make the features of interest visible
by mapping voxel values to opacities and colors. An effective trans-
fer function can assist scientists in classifying different materials
and exploring inherent spatial relationships of a volume data. Most
research on the use of transfer functions has focused on the visual-
ization of boundaries between materials [Kindlmann and Durkin
1998; Lum and Ma 2004] or the occluded materials with consistent
structures [Correa and Ma 2008, 2011; Lum et al. 2006].

However, boundary-based and structure-based methods could
not meet the needs where a scientist desires to add emphases to
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materials of interest without perfect boundaries or homogeneous
structures, especially when other materials have similar average
intensities to the areas of interest, but with different variations
in intensities. For example, in a medical feet dataset shown in
Figure 6 (a), vacuous bone marrow has an occlusion distribution
clearly differentiated from skin, bone and vasculature, but may
have the same intensity as muscles. In a combustion dataset, the
holes generated from flames (shown in Figure 8 (a) and (b)) are not
homogeneous and have almost the same intensities as ambient air.
Using only the boundary-based or structure-based methods makes
it hard to extract these areas, due to the spacial context and the
similar or non-homogeneous intensity distributions.

In this paper, we present a novel visualization approach that
combines the advantages of the boundary-based and structure-
based methods. The major contributions of the paper are:
• We introduce the usage of the standard deviation of ambient occlu-
sion on each direction to differentiate surrounding information,
and thereby identify object structures in a more robust manner.

• We apply the divergence operation on the gradient to transform a
continuously changed area into a region with consistent intensity,
and thereby enhance the identification of boundaries.

• We introduce new 2D transfer functions using the intensity field,
the divergence field, and the field of the standard deviation of
ambient occlusion. These transfer functions provide an intuitive
user interface that can facilitate users to robustly distinguish in-
terior and exterior materials from each other, especially for those
materials with an imperfect homogeneous intensity distribution
that are difficult to be identified using existing methods.

2 RELATEDWORK
There has been a great amount of research devoted to transfer
function design that is an indispensable part of volume visualization.
Most existing methods can be roughly categorized into boundary-
based methods and structure-based methods.

Boundary-based methods exploit voxel intensities and gradient
properties to guide transfer function designs [Fujishiro et al. 1999;
Guo et al. 2011; Lan et al. 2017; Lindholm et al. 2010; Takahashi et al.
2004; Wang et al. 2011]. The classic examples include Kindlmann
and Durkin’s approach of semi-automatic generation of transfer
functions using the first and second derivatives for visualizing
boundaries between materials [Kindlmann and Durkin 1998]. Lum
and Ma [Lum and Ma 2004] presented lighting transfer functions
to manipulate surface lighting and shading parameters at arbitrary
scalar value transitions for enhancing material boundaries of in-
terest. However, these boundary-based methods are not effective
for volumes with a high amount of noise. Although the use of high
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ordered smoothing gradient estimation masks (such as Sobel Fil-
ter [Lum and Ma 2004]) helps suppress this noise, it can possibly
blur the appearance of fine features of interest. Boundary-based
methods are popular in visualization systems because they mostly
use local information, which makes them easy to implement.

In recent years, researchers have recognized the limitations of
these boundary-based methods. Structure-based methods, which
attempt to move towards gathering more global information, have
been proposed. Correa and Ma [Correa and Ma 2008] described a
size-based approach to distinguish features with similar or iden-
tical intensities by the relative sizes of their features. Later they
proposed an occlusion spectrum method to classify structures by
the ambient occlusion of voxels [Correa and Ma 2009]. Curvatures
have also been used to distinguish different structures according
to their shapes [Kindlmann et al. 2003]. However, these structure-
based approaches are most effective when features can be clearly
separated from the background. In addition, they often need prior
knowledge of the features, such as sizes, and are time-consuming
by multiple-pass computations to select the best parameters. How-
ever, in practice, it is hard to know the exact size of the feature of
interest in advance. Therefore, in cases where intensity may vary
smoothly across the entire domain, occlusion-based or size-based
methods cannot extract the entire object of interest. Furthermore,
an isotropic diffusion filter is often used in these methods. This
implies the difficulty to identify a feature larger than the filter.

3 BOUNDARY-STRUCTURE-AWARE
TRANSFER FUNCTIONS

We aim to combine the advantages of boundary-based and structure-
based approaches to volume classification. Specifically, our ap-
proach is based on the most seminal works presented by Kindlmann
et al. [Kindlmann and Durkin 1998] and Correa et al. [Correa and
Ma 2009]. We first revisit these two approaches to best present the
rationale for our new transfer function design.

3.1 Boundary-Based Classification
Kindlmann et al. [Kindlmann andDurkin 1998] employed aGaussian-
based boundary model to compute the gradient of the intensity
values for classifying a volume. For example, Figure 1 (a) shows
a volume domain V1 that consists of five objects o1, o2, o3, o4 and
o5, where o1 and o2 are surrounded by low intensities and o4 is
surrounded by o3 and o5 that have medium intensities. We assume
that each object has a sharp, discontinuous change in its physical
property and that it is blurred by a Gaussian at its boundary. The
vertical dashed lines denote the boundary positions of these objects.
Below the plot of V1, we draw a 1D intensity profile f (x) for the
segment across the entire domain of V1 (i.e., the red box in V1).
Then, we can compute and plot the first and second directional
derivatives, f ′(x) and f ′′(x), of f (x). As Kindlmann et al. noted,
an ideal location for the boundary would be defined by either the
extremum in f ′(x) or the zero-crossing in f ′′(x).

The combination of f (x) and f ′(x) leads to 2D transfer functions
that can effectively classify objects based on their boundaries and
intensity values. However, this method only uses local information,
and thus cannot further distinguish objects if they have the same
intensity. For example, becauseo1,o2, ando4 have the same intensity

Figure 1: Comparison between the boundary-based method, the
structure-basedmethod, and our method for the objects with (a) ho-
mogeneous interiors and Gaussian boundaries and (b) continuously
changed interiors.

(denoted by the line l1), we cannot distinguish them only using f (x)
and f ′(x). Similarly, we cannot separate o3 and o5 either.

3.2 Structure-Based Classification
To address this issue, researchers have proposed incorporatingmore
structure information to enhance object classification. Correa et
al. [Correa and Ma 2009] used the ambient occlusion of a voxel as
a metric for classification. In computer graphics, ambient occlusion
was proposed by Zhukov [Zhukov et al. 1998] using obscurance to
model the ambient illumination of an object. It was used to improve
the rendering of volumetric models, particularly for representing
how each exposed point in a scene computes the ambient lighting
on isosurfaces. The ambient occlusion of a point p can be computed
by integrating the visibility function over the hemisphere Ω with
respect to a projected solid angle:

AO (p) =
1
π

∮
Ω
Vp,ω̂ (n̂ · ω̂)dω (1)

where Vp,ω̂ is the visibility function at p along a direction ω̂, n̂
represents the surface normal through p, and dω is the infinitesimal
solid angle step of the integration variable ω̂. This equation can be
generalized to compute the occlusion of a voxel p in a volume as:

O (p, д) ≈
1
N

π∑
ϕ=0

2π∑
θ=0

A(p, ω̂(θ, ϕ), д) (2)

where N is the number of neighbors of p, д is the input field (e.g.,
the scalar field f (x)). A(p, ω̂,д) is the directional occlusion of p
along direction ω̂ within the field д, defined as:

A(p, ω̂, д) =
T∑
t=0

M (p + t ω̂, д) (3)
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where T refers to the number of samples along the direction ω̂
andM(p,д) is a visibility mapping function.M(p,д) is application-
specific. For example, for traditional isosurface applications, it can
be a binary function that is 1 for the isovalue of interest, and is
otherwise 0. Other functions, such as Gaussian weighted filters or
linear ramps, are also commonly used. Equation 2 shows ambient
occlusion can be considered as the convolution of the volume with
a low pass filter where N is the size of the filter. It encodes the
average contribution of the surrounding neighborhood and can
help separate structures, as long as N is larger than the size of
structures to be classified.

When this method is applied to the scalar field f (x) in Figure 1
(a), the result is shown as the plot of O(f (x)). The occlusion values
of o1(o2) and o4 are clearly different, which are indicated by the lines
l2 and l3, respectively. This is because the surroundings of o1(o2)
and o4 are different, as shown in V1. This difference of occlusion
allows us to easily separate these two objects, although they have
the same intensity and cannot be separated using the boundary-
based method. However, o1 and o2 have the same intensity and
surrounding, resulting in the same occlusion indicated by l3. In this
case, we cannot separate them using occlusion. Moreover, we may
not have prior knowledge of the size of objects before classification.
In practice, this method often needs multiple-pass computations to
find the best combination of parameters (i.e.,M , T , N , etc.).

3.3 Rationale
Our goal is to design transfer functions that can distinguish objects
with similar intensities, but different surroundings (e.g., o2 and
o4 in Figure 1 (a)), as well as objects with similar intensities and
surroundings, but different locations (e.g., o1 and o2 in Figure 1 (a)).
Correa et al.’s method only considers the local information within
the size of the filter. In this work, we advocate taking advantage of
global information in the whole domain.

3.3.1 Standard Deviation of Ambient Occlusion. We notice that
if we consider the information for the whole domain (i.e., use a filter
that covers the whole domain), we still get the same occlusion for o1
ando2. This is because the occlusion value is equal to the summation
of the values ofM from all voxels, according to Equations 2 and 3.
However, we observe that o1 and o2 have different variations within
the directional occlusions (i.e., the results of the function A from
Equation 3) along all directions. Hence, we express such a variation
at a voxel p as the standard deviation of ambient occlusion:

Ostd (p, д) =

√√√
1
H

H∑
i=1

(A(p, ω̂i , д))2 − (
1
H

H∑
i=1

A(p, ω̂i , д))2 (4)

where H is the number of different directions.
We verify this idea by applyingOstd on the scalar field f (x) and

plottingOstd (f (x)) in Figure 1 (a). For o1 and o2 that have the same
f (x) value, we can see that they can be clearly distinguished by
the different values of the standard deviation of ambient occlusion
based on f (x), while they cannot be separated by only comput-
ing the summation of ambient occlusion O(f (x)) in Correa et al.’s
method as discussed in Section 3.2. Intuitively, we can see that
around o1 and o2 (e.g., the left and the right sides of each object in
V1) the global variation of ambient occlusion on f (x) is different,
which can be successfully quantified by Equation 4.

3.3.2 Field Transformation. It is effective to apply the standard
deviation of ambient occlusionOstd on the scalar field f (x) to tackle
relatively simple cases (e.g., two objects o1 and o2). However, it has
a few limitations when the data becomes more complex. When we
add more objects (e.g., o3, o4, and o5), some Ostd (f (x)) values for
an object may be the same as its surroundings or other objects.
For example, in the Ostd (f (x)) profile in Figure 1 (a), the line l4
has the cross-sections with o1 and o4. Thus, we cannot accurately
distinguish o1 and o4 according to their Ostd (f (x)) values.

We observe that this issue is mainly caused by the non-zero
intensity values of objects that are used as the input to the vis-
ibility mapping function M , but can reduce the influence of the
surroundings. To address this issue, we incorporate the idea of the
boundary-based methods, where we use f ′(x) or f ′′(x) to trans-
form the original scalar field into another field where only the
boundary areas are highlighted and the other areas are suppressed,
as shown as f ′(x) and f ′′(x) in Figure 1 (a). If we use the occlusion
function O to the field f ′(x) or f ′′(x), we still cannot distinguish
the objects, as shown by the example O(f ′′(x)) where o1 and o2
have similar values. Alternatively, if we use the standard deviation
of ambient occlusionOstd to the field f ′′(x), we can clearly classify
all objects. As shown inOstd (f

′′(x)) in Figure 1 (a), each object cor-
responds to a unique value. We did not directly use Ostd (f

′(x)) in
our approach because it is less appropriate in general cases, which
will be detailed in Section 3.3.3.

We can extend f ′′(x) to 3D scalar fields, which can be denoted
by the divergence operation. The divergence of a vector field F ,
expressed as div(F ) or ∇ · F , was originally defined by a limit of
the surface integral:

∇ · F ≡ lim
V→0

∮
s F · ds

V
(5)

where the surface integral gives the value of F integrated over a
closed infinitesimal boundary surface S = ∂V surrounding a volume
elementV , which is taken to size zero using a limiting process. The
divergence can also be denoted as the second derivative of the
intensity f (x ,y, z):

∇2f (x, y, z) =
∂2f
∂x 2 +

∂2f
∂y2 +

∂2f
∂z2

(6)

The divergence of the gradient of f is also commonly referred to
as the Laplace operator or Laplacian, and results in a new scalar
field ∇2 f . When the value of ∇2 f in an area is 0, it implies that the
change of the gradient is constant in this area, and thus this area is
transformed to be homogeneous by the application of divergence.
In this way, the originally continuously changed materials can be
extracted with a constant divergence value, as the voxels in this
part have constant changes in gradient values. Meanwhile, the
boundaries can also be differentiated from possible noise or other
less interesting features.

3.3.3 General Cases. In a more general case of imaging or scien-
tific volume visualization, a scientist may need to add emphases to
materials of interest that lack perfect homogeneous patterns, such
as the feet and combustion datasets, shown in Figures 6 and 8. Kindl-
mann et al.’s boundary-based method can only extract the boundary
of the structure by the 2D histogram of the intensity versus the
second deviation, and it is hard to classify structures with similar
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continuously changed intensities but at different locations, because
the structures may have the same magnitudes of gradient vectors.
Correa et al.’s structure-based method also encounters difficulty in
accurately extracting these structures (e.g., the marrow from the
foot MRI dataset, and the holes in the combustion dataset) due to
the non-homogeneous interior intensities of these structures.

Compared to existing techniques, our novel approach extends
the expressiveness and robustly classifies structures by bridging
the advantage of boundary-based and structure-based methods,
especially for extracting structures with imperfect homogeneous
intensity distributions. Figure 1 (b) shows a volume domainV2 that
consists of five objects o6, o7, o8, o9 and o10, where o6 and o7 are
surrounded by low intensities and o9 is surrounded by o8 and o10
that have medium intensities. We assume that the each object has
a continuous change in its physical property, as shown in the plot
of f (x) in Figure 1 (b), where the line l5 indicates that o6, o7, and
o9 have the same maximum intensity.

In this case, f ′(x) is expressed as step functions, and the extrema
cannot be considered as the indicators of the boundaries. Hence,
Kindlmann et al.’s boundary-based method cannot be applied for
classification using f ′(x). As shown in the plot of O(f (x)), Correa
et al.’s structure-based method can distinguish the objects with
the similar intensity but different surroundings, such as o7 and
o9 that corresponds to the lines l6 and l7, respectively. However,
it cannot distinguish objects with similar intensities and similar
surroundings, such as o6 and o7.

Applying the standard deviation of ambient occlusion Ostd on
f (x) can capture the global variation of surroundings of objects,
and thereby allows us to classify o6 and o7, as shown in the plot of
Ostd (f (x)) in Figure 1 (b). However, when consideringmore objects,
it also shows the same issue as its counterpart in Figure 1 (a), where
the line l8 has the cross-sections with o6 and o9. In this case, we first
use f ′′(x) to highlight the boundary areas and suppress the other
areas, and then applyOstd on f ′′(x). By combining the advantages
of the boundary-based and structure-based methods, the resulting
Ostd (f

′′(x)) can perfectly separate each object with a unique value,
as well as classify continuously changed areas.

Similar to f (x) in Figure 1 (a), the step shapes of f ′(x) in Figure 1
(b) also reduces the influence of the surroundings in Ostd . Thus,
the shape of Ostd (f

′(x)) in Figure 1 (b) is similar to Ostd (f (x)) in
Figure 1 (a), and cannot be effectively used in this case. Given these
cases, we did not use Ostd (f

′(x)) in our approach.

3.4 Transfer Function Design
We derive a new boundary-structure-aware transfer function design
to address a general scalar field f (x) that has relatively consistent
or continuously changed intensities. The key of our boundary-
structure-aware transfer functions is to use the standard deviation
of ambient occlusionOstd (see Equation 4), which incorporates the
global structure information of an input field д surrounding a voxel
p and can have a different value for each object.

For a general volume data, we first use f ′′(x) to highlight ob-
ject boundaries and suppress object interiors, and thus transfer a
potentially continuously changed region as a relatively constant
region. Then, we use f ′′(x) as the input field д, and compute the
standard deviation of ambient occlusion Ostd (f

′′(x)) of each ray

Figure 2: The properties of occlusionO (f (x ))with respect to object
size (a), distance (b), and shape (c).

emitted from a voxel. In this way, we leverage the advantages of
both the boundary-based and structure-based methods.

We establish a 2D classification space using the intensity values
f (x) or the second directional derivatives f ′′(x) with the standard
deviation of ambient occlusion Ostd (f

′′(x)) from f ′′(x). In our de-
sign, the horizontal dimension denotes f (x) or f ′′(x), while the ver-
tical dimension corresponds toOstd (f

′′(x)). To change the opacity
and the color of the selections, we use three additional 1Dmappings
with respect to f (x), f ′′(x), and Ostd (f

′′(x)). When a structure
is selected from the 2D histogram, the color and opacity values
can be set individually according to f (x), f ′′(x), or Ostd (f

′′(x)).
This approach can simplify the complexity from high dimensional
transfer functions, and a user can use multiple variables at one time
to assign color and opacity values.

Therefore, we construct a boundary-structure-aware transfer
function that is a mapping from the space spanned by f (x) or f ′′(x)
and Ostd (f

′′(x)) into color and opacity:

f (x ) ×Ostd (f
′′(x )) 7→ [0, 1] or f ′′(x ) ×Ostd (f

′′(x )) 7→ [0, 1]. (7)

By tagging different regions of the resulting 2D histogram and
assigning color and opacity, users can select regions with similar
continuously changed intensity values but in different locations
within the dataset.

We note that in some special cases (e.g., a simple volume only
consisting of two objects), the usage of f (x) as the input field д
works better than f ′′(x). The reason is that after the computation
of f ′′(x), we only obtain the values of boundaries and other parts
will be close to zero values in these cases. Thus, if there are two
objects with the same intensities and sizes in the volume, they
will have a very similar standard deviation of ambient occlusion
based on f ′′(x). In this case, we can use the method of computing
the standard deviation of ambient occlusion based on f (x). For
example, as discussed in Section 3.3, o1 and o2 in V1, and o6 and o7
in V2 can be easily distinguished by Ostd (f (x)). However, when
more objects are involved in the volume, we recommend themethod
of computing the standard deviation of ambient occlusion based on
f ′′(x), because the f ′′(x) operation helps us simplify the volume
and it is also ready for the differentiation of the interior and exterior.

3.5 Properties
Our boundary-structure-aware transfer functions feature a set of
proprieties that lead to robust classification with respect to various
object changes in size, distance, shape, and intensity.

For comparison, we first use a simple example to illustrate the
strengths and the possible limitations of Correa et al.’s method with
respect to object size, distance, and shape. As shown in Figure 2
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Figure 3: Comparison between Correa et al.’s method and our
method to separate structures even though they share the same
intensity, shape, size, and environment. The distance between two
balls is less than the ball size.

(a), we assume that there are two 3D balls A and B with different
sizes. We employ a filter F to compute the occlusion O(f (x)) for
A and B using Equation 2. The filter is represented by a dotted
circle in Figure 2 and has the size of the bigger ball A. We denote
the volumes of A, B, and the filer F as VA, VB , and VF , respectively,
whereVA = VF > VB . Without loss of generality, we assume that A
and B have the same intensity value of 1, and the intensity of the
surroundings is 0. We also assume that, for any voxel, the value of
theM function in Equation 3 is equal to its intensity value. Thus,
the occlusion around a voxel p is the intersection volume of A and
B with F , when F ’s center is at p.

We first let the distance between A and B be large enough in
that the filter F cannot simultaneously intersect with both A and
B, as shown in Figure 2 (a). We can easily see that the maximum
occlusionOA_max of A isVA, when F and A are concentric (see the
red point). When the center of F is at a boundary voxel ofA (see the
orange point), we gain the minimum occlusionOA_min ofA, which
is the intersection volume VFA of F and A. Similarly, the maximum
occlusion OB_max of B is VB , when F and B are concentric (see
the green point). When the center of F is at a boundary voxel of
B (see the blue point), we obtain the minimum occlusion OB_min
of B, which is the intersection volume VFB of F and B. Therefore,
if OB_max < OA_min (i.e., VB < VFA), Correa et al.’s method can
perfectly distinguish A and B using the occlusion functionO(f (x)),
even though A and B have the same intensity value of f (x), as
shown in the 2D histogram in Figure 2 (a).

However, the condition of OB_max < OA_min may not always
hold with changes in object size, distance, or shape. For example,
we can enlarge B in Figure 2 (a) to make VB > VFA, and thus gain
OB_max > OA_min . Alternatively, we can keep the sizes of A and
B unchanged but shorten the distance between them, as shown in
Figure 2 (b). In this case, the filter F can possibly intersect with
both A and B, when the center of F is at a boundary voxel of B
(e.g., the blue point). The occlusion at the blue point is equal to the
intersection volume VFAB of F , A and B, and can be greater than
VFA at the orange point. Therefore, OB_max > OA_min is gained.
Similarly, the overlapping of the occlusion values can also happen
in the case of two objects with a similar size but different shapes, as

Figure 4: Comparison between Correa et al.’s method and our
method to separate structures with the same intensity but differ-
ent shapes. The distance between the two objects is smaller than
the object sizes.

Figure 5: Comparison between Kindlmann et al.’s method (b), Cor-
rea et al.’s method ((c)-(d)), and ourmethod ((e)-(f)) to separate struc-
tures using one synthetic dataset containing two nested cylinders
with varying intensities ((a)).

shown in Figure 2 (c). In these situations, the occlusion spectrum
cannot perfectly distinguish objects.

Our method, which computes the standard deviation of ambient
occlusion Ostd , not only inherits the strengths of the occlusion
spectrum, but also addresses its limitations. In this case that only
consists of two objects, according to our discussion in Section 3.4,
we choose f (x) as the input field to show the effectiveness of the
standard deviation of ambient occlusion Ostd in classification.

3.5.1 Size and Distance. Similar to Correa et al.’s method, our
method can classify objects with different sizes and at a sufficient
distance. More importantly, our method can also classify nearby
objects with the same size. For example, we create a synthetic
3D dataset where two balls are contained in a box, as shown in
Figure 3 (a). The balls share the same intensity, shape, size, and
environment. The balls and the box have the same intensity. The
distance between two balls is less than the ball size. As shown in
Figure 3 (b), the occlusion values of O(f (x)) of two balls overlap in
the 2D histogram, where a single selected region (i.e., a green box)
can be mapped to the partial structures on both balls, as shown in
Figure 3 (c)-(e). This issue corresponds to the situation illustrated in
Figure 2 (b). However, our method uses the Ostd (f (x)) to encode
the global structure information, and can help easily separate two
balls. When we plot the intervals of Ostd (f (x)) in a 2D histogram
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Figure 6: The classification of the marrow, bone and skin from the feet data using our method ((b)-(c)), Correa et al.’s method ((d)-(e)), and
Kindlmann et al.’s method ((f)-(g)). In (c), (e), and (g), the opacity values are 1.0, 0.4 and 0.25 for the regions selected by the red, yellow and grey
boxes, respectively.

(see Figure 3 (f)), we can obtain a clear separation of structures, and
each of them is mapped to an individual ball (see Figure 3 (g)).

3.5.2 Shape. Our method can also classify nearby objects with
different shapes. As shown in Figure 4 (a), the distance between
the ball and the cylinder is smaller than their sizes. In this case, the
occlusion valuesO(f (x)) of the two structures can partially overlap,
leading to the difficulty in separation, as shown in Figure 4 (b)-(d).
This issue corresponds to the situation illustrated in Figure 2 (c).
Alternatively, our method uses Ostd (f (x)) to capture the distinct
variation of the neighborhood intensities of the objects, and thereby
is more robust in classification, as shown in Figure 4 (e) and (f).

3.5.3 Intensity. As discussed in Section 3.3.3, apart from classi-
fying objects with constant or relatively constant intensities, one
unique property of our method is to tackle objects with varying
intensities that are difficult to classify using the exiting boundary-
and structure-based methods. Figure 5 (a) shows an example that
contains two concentric nested cylinders in 3D. The inner cylinder
has the intensity linearly changing from 1 to 0 to 1 to 0 along its
circumference, while the intensity of the outer cylinder linearly
changes from 0 to 1 to 0 to 1. The other areas have the same val-
ues of intensity 2. Figure 5 (b) shows a 2D histogram with the
intensity f (x) versus its first derivative f ′(x) using Kindlmann et
al.’s method [Kindlmann and Durkin 1998]. Because this synthetic
dataset does not follow the Gaussian-based boundary model, it is
difficult to classify these two cylinders using this 2D histogram.

Figure 5 (c) shows the result using Correa et al.’s method [Correa
and Ma 2009]. By selecting different regions in the 2D histogram
with the intensity f (x) versus the occlusion O(f (x)) in Figure 5
(d), it can mostly classify these two cylinders. However, the similar
occlusion values can be generated within the two cylinders along
the boundaries, and thus we cannot perfectly classify these areas.

Figure 5 (e) shows the result using our method. With the 2D his-
togram of the second derivatives f ′′(x) and the standard deviation

of ambient occlusion Ostd (f
′′(x)) in Figure 5 (f), we can success-

fully distinguish the outer and inner cylinders. By computing the
divergence of the gradient of f (x), we can suppress the continu-
ously changed intensity of each cylinder into a low constant value,
and highlight the boundaries between these two cylinders. Then,
we compute the standard deviation of ambient occlusion on the
resulting f ′′(x) field, and generate different values of the cylinders
that exhibit the completely different surroundings using the global
structure information. Therefore, we can see that each cylinder
has a f ′′(x) value close to zero (i.e., the middle point of the f ′′(x)
profile in Figure 5 (f)), but they have different Ostd (f

′′(x)) values.
We can clearly classify the outer and inner cylinders corresponding
to the blue and red regions in the 2D histogram.

4 CASE STUDIES
4.1 Imaging Datasets
Imaging is one of themost important tools to display 3D objects, and
is widely used in various medical and engineering applications (e.g.,
evaluating size and form of tissue structures, and detecting defects
in mechanical components). Example imaging methods include
ultrasound, MRI, and CT [Karatas and Toy 2014]. An imaging data
often has specific objects that can be expressed by the Gaussian-
based boundary model (see Figure 1 (a), Sections 3.1 and 3.2).

We first apply our boundary-structure-aware transfer functions
to an MRI scan of feet. Similar to the existing methods, our method
can successfully classify the main structures such as bone, skin
and muscle. More importantly, our method can also separate fine
features, such as the marrow, from other tissues, which is hard to
realize using the existing methods. As shown in Figure 6 (a), we can
tell from the 1D transfer function that the marrow has the same
intensity as the muscles between the bone and skin. The intensity
values in the marrow are continuously changed, so it is hard to
extract the marrow part only by those values. Figure 6 (d) and (e)
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show the results using Correa et al.’s method and the corresponding
transfer function with O(f (x)) and f (x), respectively. We can see
that the marrow part can only partially be extracted, if we want to
extract all marrow part, other sectional areas with the same values
of O(f (x)) and f (x) will also be detected. Figure 6 (f) and (g) show
the results using Kindlmann et al.’s method and the corresponding
transfer function with f ′′(x) and f (x), respectively. In this example,
a part of instep areas has the same f ′′(x) and f (x)) values as the
marrow. Thus, the marrow part cannot be accurately separated
by the structure-based method and the boundary-based method.
This verifies our rationale shown in Figure 1 that Correa et al.’s and
Kindlmann et al.’s methods hardly distinguish objects at different
locations with similar intensities and similar surroundings.

Our method works well on this kind of datasets. Here, we use
the intensity versus the standard deviation of ambient occlusion
based on the divergence (i.e., f (x) versus Ostd (f

′′(x))) as a 2D
classification space. The reason why we choose the intensity f (x)
as one of the metrics is that we can easily identify the bone and skin
by the different intensity values. Thus, it is easy for us to roughly
identify each part in a classification space. The occlusion axis helps
us separate the objects with similar intensities, but different loca-
tions. We assign the color to each point on the histogram based on
the divergence f ′′(x) to help a user better distinguish the boundary.
Because the divergence f ′′(x) helps us transfer the continuously
changed region to a relatively constant intensity, computing the
standard deviation of ambient occlusion based on the divergence
assists us in finding the occluded marrow in fociles and separate
it from muscles and the marrow in toes. Figure 6 (b) shows our
classification results for the feet data, while the image (c) shows
a 2D classification space based on f (x) versus Ostd (f

′′(x)). It can
be seen that the marrow, shown in red in the image (b), can be
extracted by brushing the red region in the image (c). The yellow
and gray regions in the image (c) correspond to bone and skin,
respectively. This marrow structure cannot be accurately extracted
by the existing boundary-based and structure-based methods.

We also apply our boundary-structure-aware transfer function
to a CT scan of engine data. Our method can not only depict the
main structure of the engine, but also extract the fine features,
such as the stick-shape holes, and separate the holes at different
locations respectively. Figure 7 (a) and (b) are the results from
Kindlmann et al.’s method. We can see that this method extracts
the holes simultaneously and cannot independently display either
one because two stick-shape holes share the same f (x) and f ′′(x)
values, and another circular hole with the same f (x) and f ′′(x) is
also extracted. However, our method (shown in (c)) separates the
two holes by a 2D classification space that consists of the divergence
of intensity versus the standard deviation of ambient occlusion
based on the divergence (i.e., f ′′(x) versus Ostd (f

′′(x))) as shown
in the image (d). When we use Correa et al.’s method to extract the
hole in the middle, the boundary of engine structure and partial
hole nearby will also be extracted as shown in the image (e).

4.2 Scientific Simulation Datasets
Visualizing scientific simulation datasets is another important ap-
plication. Different from imaging datasets, scientific simulation
datasets are often characterized with continuously changed scale

Figure 7: The classification of the holes in the engine data using
Kindlmann et al.’s method ((a)-(b)), our method ((c)-(d)), and Correa
et al.’s method ((e)-(f)). The opacity values are 1.0, 1.0 and 0.4 for the
regions selected by the red, orange and yellow boxes, respectively.

Figure 8: (a) shows a side view of a combustion data. (b) shows a
hole and its boundary on a slab in the selected region of (a), which
are classified using Correa et al.’s method ((c)-(d)) and Kindlmann et
al.’s method ((e)-(f)).

fields, where generally 3D features cannot be expressed by the
Gaussian-based boundary model (see Figure 1 (b) and Section 3.3.3).

Figure 8 (a) shows an example dataset generated from a combus-
tion simulation, which contains an isosurface of a flame structure.
The scientists are interested in extracting the holes on the surface.
Figure 8 (b) shows a hole on an extracted slab. These holes corre-
spond to a sudden drop in the intensity values, corresponding to the
extinction event. The classification of the holes in the combustion
simulation helps the scientists analyze the extinguished areas and
investigate the underlying chemical and physical processes, which
is critical to improving combustion efficiency.

However, the intensities of the holes in the combustion dataset
are most continuously changed and have similar intensities as air.
This hole structure cannot be identified only using the gradient or
the occlusion information with the traditional methods. By com-
parison, Correa et al.’s method shown in Figure 8 (c)-(d) cannot
exactly extract the holes while Kindlmann et al.’s method shown
in Figure 8 (e)-(f) can only extract hole’s boundary. In addition, a
portion of the upper-left region (in blue) is also misclassified with
the central hole using these two methods.
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Figure 9: The classification of the hole and its boundary in the com-
bustion data using our method. The opacity values are 1.0, 1.0 and
0.5 for the regions selected by the red, blue, and yellow boxes.

We apply ourmethod using the divergence f ′′(x) versus the stan-
dard deviation of the occlusion based on the divergenceOstd (f

′′(x))
as a 2D classification space as shown in Figure 9 (d). The reason is
that we can easily identify the area in the space with zero diver-
gence and lowest standard deviation of ambient occlusion, as the
hole occluded in the volume and the region with higher occlusions
and lowest negative and highest positive divergences correspond to
the boundary. Figure 9 shows classification results from applying
our method to the combustion dataset. We can easily extract the
hole shown as the blue color in the image (a), corresponding to the
area in the blue box in the image (d). The image (b) shows the side
view of this hole of which intensities are continuously changed.
The red area in the image (d) denotes the lower divergence, which
is the boundary of the hole colored by red in Figure 9 (c). The area
in the yellow box in the image (d) corresponds to the flame colored
by yellow in the images (a), (b) and (c).

We also apply our method to another combustion simulation
case in Figure 10. Our boundary-structure-aware transfer function
can identify the specially shaped hole, shown as the red color in the
image (a), on the frame structure shown in the image (b). The image
(c) shows the corresponding 2D histogram based on f (x) versus
Ostd (f

′′(x)), and the corresponding selected region in the light red
box. The images (d)-(f) show the cutaway from the side view of our
method ((d)) and 1D transfer function based on intensity without
air ((e)) and with air ((f)). The image (f) clearly shows that the hole
and the air have the similar intensity, and are hard to be separated
using the traditional methods.

5 CONCLUSION
This paper presents boundary-structure-aware transfer functions
for volume classification. We introduce a novel method to make use
of the standard deviation of ambient occlusion to enhance classify-
ing 3D volume datasets. In addition, we apply divergence along the
gradient as one of the main criteria for classification. Our method
can not only highlight the boundaries, but also accurately distin-
guish objects that may be occluded or have continuously changed
patterns. Our work shows a promising approach to help scientists
explore their data with more detailed and robust classifications.

Figure 10: The classification of the hole in another combustion
data using our method.
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